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COMMENT 

Critical exponent of a directed self-avoiding walk 

H W J Blote and H J Hilhorst 
Laboratorium voor Technische Natuurkunde, Lorentzweg 1, 2628 CJ Delft, The Nether- 
lands 

Received 25 May 1983 

Abstract. We have investigated numerically and analytically the directed self-avoiding 
walk problem recently proposed and studied by Chakrabarti and Manna. We find a 
different result for the exponent U, namely Y = 1. 

Recently, a directed self-avoiding random walk problem on the simple quadratic 
lattice was defined and investigated by Chakrabarti and Manna (1983). In this problem, 
each step has a length of one lattice unit, but the direction of the step is subject to a 
restriction: steps may occur in the f x and the + y directions; steps in the - y direction 
are forbidden. All allowed self-avoiding walks have equal weight. The average 
end-to-end distance for walks of N steps is denoted as RN. Chakrabarti and Manna 
(CM) investigated the behaviour of EN as a function of N in the limit N + W. To this 
purpose, they numerically calculated RN for N values up to 14 by means of a computer. 
They found that, for large N, 

R N - ~ ”  

with v = 0.86*0.02. This value was estimated from a comparison 
and log N. 

We have calculated estimates vN of the exponent v, defined as 

V N  = l o g [ R ~ / R ~ - ~ l / l o g [ N / ( N  - 111 

(1) 
between log l?N 

from the I?, data given by CM. The behaviour of vN thus obtained suggests the 
possible presence of rounding errors in the CM data, in particular for the higher N 
values. For this reason we have computed some results for RN using a machine 
accuracy of 16 decimal places (table 1). 

The results for N 3 8 show increasing differences from those of CM. Estimates vN 
from our results are also shown in table 1. For higher values of N, they increase 
significantly above the estimate of CM. We have also shown increments RN -ENwI  
in table 1: these numbers rapidly approach a constant value $. This corresponds to 
linear behaviour of RN for high N, hence to v = 1. The difference with v = 0.86 as 
estimated by CM can be explained by the unfortunate approximate cancellation of 
two effects: the aforementioned rounding errors, and nonlinear behaviour of log RN 
as a function of log N for N between 10 and 14. 

To check our numbers we did an analytic calculation. Let G N ( x ,  y )  be the number 
of N-step walks between the origin and ( x ,  y ) .  Then 
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Table 1. Numerical results for the average lengths R ,  of walks of N steps, estimates of 
the exponent Y, and the increments of I?,. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1.000 00 
1.665 26 
2.225 46 
2.785 23 
3.322 00 
3.850 99 
4.372 81 
4.890 44 
5.404 80 
5.916 85 
6.427 08 
6.935 91 
7.443 61 
7.950 39 
8.456 40 
8.961 79 
9.466 63 
9.971 01 

10.475 00 
10.978 64 
11.481 98 
11.985 06 
12.487 90 
12.990 54 

- 
0.735 8 
0.715 2 
0.779 9 
0.789 8 
0.810 5 
0.824 4 
0.837 8 
0.849 1 
0.859 1 
0.867 9 
0.875 7 
0.882 6 
0.888 8 
0.894 3 
0.899 4 
0.904 0 
0.908 2 
0.912 0 
0.915 5 
0.918 8 
0.921 8 
0.924 6 
0.927 2 

1.000 0 
0.665 3 
0.560 2 
0.559 8 
0.536 8 
0.529 0 
0.521 8 
0.517 6 
0.514 4 
0.512 0 
0.5102 
0.508 8 
0.507 7 
0.506 8 
0.506 0 
0.505 4 
0.504 8 
0.504 4 
0.504 0 
0.503 6 
0.503 3 
0.503 1 
0.502 8 
0.502 6 

To find G N ( x ,  y )  we have to do some combinatorics. We define a + x  segment ( - x  
segment) of a walk as a sequence of one or more consecutive steps in the +x direction 
( - x  direction) preceded and followed by a step in the y direction. Let the number 
of + X  segments in a walk be t ,  and the number of - x  segments t-. Each of these 
segments has a definite y coordinate which, for a walk between (0,O) and ( x ,  y ) ,  may 
take any of the y + 1 integer values from 0 to y .  The number of ways of arranging 
the + x  segments and the - x  segments with respect to their y coordinate is therefore 
( y  + l ) ! /[ t+!t-!(  y + 1 - t+ - t-)!I .  How many walks are there with a given arrangement? 
The walk has N steps of which y are in the y direction, and hence N - y  in the f x  
direction. Since the net displacement along the x axis is x ,  there must be :(N + x  - y )  
steps in  the + x  direction (i.e. contained in the + x  segments) and & 4 - x  - y )  steps 
in the - x  direction (i.e. contained in the - x  segments). Hence the total number 
m(t+, t-)  of walks with given t+ and t- is the previous combinatorial expression 
multiplied by the number of ways of distributing ; ( N + x  - y )  steps over t+ segments 
and i (N - x  - y ) step over t- segments, i.e. 

m ( t+,  t - )  = 

Finally 

(4) 
( Y  + I)! 

t+! t - !  ( y + 1 - t ,  - t - ) !  ( t + - 1  
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For large N ,  we expect t+, t -  and y also to become large and we may use Stirling’s 
formula in each of the factors in (4). The summations in ( 5 )  may then be replaced 
with integrations, and we can obtain, using the steepest-descent method, an asymptotic 
expansion of the integrals. A maximum of the integrand occurs when, to leading 
order in N ,  

t ,  = [ $ q / ( n  *6)][1* 6 - (1 - 6’ - 277 + 277 ’)l’*yV, (6) 
where 6 = x / N  and 77 = y /N.  The expression (3) may be evaluated subsequently by 
the same technique. GN(x,  y )  appears to have significant values only close to the point 
x = 0, y = iN, and thus we find the leading term in the expansion of E,: 

I?, -- $N. (7) 

v = l  (8) 

This shows that 

and confirms the prefactor strongly suggested by the numerical results of table 1. 
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